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Abstract—Deep learning and signal processing are closely
correlated in many IoT scenarios such as anomaly detection
to empower intelligence of things. Many IoT processors utilize
digital signal processors (DSPs) for signal processing and build
deep learning frameworks on this basis. While deep learning is
usually much more computing-intensive than signal processing,
the computing efficiency of deep learning on DSPs is limited due
to the lack of native hardware support. In this case, we present a
contrary strategy and propose to enable signal processing on top
of a classical deep learning accelerator (DLA). With the obser-
vation that irregular data patterns such as butterfly operations
in FFT are the major barrier that hinders the deployment of
signal processing on DLAs, we propose a programmable data
shuffling fabric and have it inserted between the input buffer
and computing array of DLAs such that the irregular data is
reorganized and the processing is converted to be regular. With
the online data shuffling, the proposed architecture, SigDLA, can
adapt to various signal processing tasks without affecting the
deep learning processing. Moreover, we build a reconfigurable
computing array to suit the various data width requirements
of both signal processing and deep learning. According to our
experiments, SigDLA achieves an average performance speedup
of 4.4×, 1.4×, and 1.52×, and average energy reduction of 4.82×,
3.27×, and 2.15× compared to an embedded ARM processor
with customized DSP instructions, a DSP processor, and an
independent DSP-DLA architecture respectively with 17% more
chip area over the original DLAs.

Index Terms—Signal Processing, Deep Learning Accelerator,
Variable Data Width, Programmable Data Shuffling.

I. INTRODUCTION

Deep learning has been demonstrated to be successful in
numerous domains of applications, is increasingly adopted in
IoT devices to enable intelligence of things under various
scenarios, such as anomaly detection and status monitoring
[1] [2] [3]. While many of these IoT devices rely on sensors
to capture physical signals such as vibration and temperature
for the detection or monitoring, signal processing that focuses
on denoising and transformation is usually applied with the
deep learning processing for more effective inference [1]
[2] [3] [4]. Although specific signal processing algorithms
and deep learning models may vary across different IoT
applications, they are generally required at the same time and
involve massive data transfer between them due to consecutive
processing.

However, many IoT computing engines utilize a DSP pro-
cessors to perform signal processing and build deep learning
systems on top of the DSP processor [5] [6] [7] [8] or

even a general-purpose processor (GPP) [9] [10] [11] [12],
which fails to achieve energy-efficient deep learning due
to the lack of native hardware support. Particularly, deep
learning is usually more compute-intensive and memory-
intensive compared to signal processing. Hence, implementing
deep learning on DSP is suboptimal for IoT devices that
feature both signal processing and deep learning. Some of the
recent IoT processors [13] also have custom deep learning
processors embedded and seated along with DSP processors.
Essentially, they have deep learning and signal processing
performed on independent DLAs and DSP, respectively, for the
sake of optimized energy efficiency. However, the intelligent
signal analysis demands non-trivial data transfer between the
DSP processor and deep learning processor, which will incur
substantial communication overhead in terms of power and
latency. Moreover, independent accelerators with private on-
chip buffers and computing arrays inevitably consume larger
chip area and lead to higher chip price [14], which is usually
unacceptable for cost-sensitive IoT devices.

In this paper, we propose a novel approach to extend signal
processing on top of a typical DLA and build a unified
accelerator called SigDLA. We note that both DLA and DSP
utilize MAC arrays for computation, and we aim to map two
different workloads onto the same MAC array. The major
barriers that hinder the mapping of signal processing on deep
learning computing array are roughly the shuffled processing
like butterfly operations in FFT and the larger data width
which usually depends on the sensor resolution. For shuffled
operations [15] [16] [17] [18] [19], we propose a data shuffling
fabric and have it inserted between on-chip memory and the
DLA computing array. The shuffling fabric reorganizes the
shuffled operations such that they can be converted to standard
tensor operations to fit the regular computing array in DLAs.
The shuffling fabric is programmable to suit different data
reorganization requirements of various irregular operations in
signal processing. To handle the wide data width, we build a
serial processing element-based MAC array to support tensor
operations with variable data width, which has been intensively
explored in prior works [20] [21].

The proposed architecture can also be utilized in compute-
intensive tasks beyond signal processing. The benefits of the
unified architecture are multi-folded. Firstly, it achieves opti-
mized performance of deep learning which usually dominates
the execution time of intelligent IoTs and provides competitive



performance for signal processing. Secondly, it reduces the
overall chip area substantially compared to independent DSP
and DLA accelerators because of the unified computing arrays
and on-chip buffers the majority of the architecture such as on-
chip buffers shared across the different applications. Thirdly,
the data transfer between signal processing and deep learning
can be performed with on-chip buffers without interrupting the
GPP using classical mapping optimizations like layer fusion,
which benefits the overall system.

The major contributions of this work can be summarized as
follows.

• We observe the close correlation of signal processing and
deep learning on a broad domain of IoT applications
and identify the inefficiency of existing architectures.
With this observation, we propose a unified computing
architecture, SigDLA, on top of a typical DLA to achieve
energy-efficient signal processing and deep learning.

• SigDLA extends the computing capability of widely used
DLAs for signal processing by decoupling the computing
array and the on-chip memory with a programmable data
shuffling fabric, which converts irregular processing in
typical signal processing tasks to tensor processing and
enables the deployment of various non-tensor computing
tasks. In addition, it has a configurable computing array
involved to support variable data width of signal process-
ing and deep learning.

• We implement SigDLA on top of NVDLA [22] and
achieves an average performance speedup of 4.4×, 1.4×,
and 1.52×, and average energy reduction of 4.82×,
3.27×, and 2.15× compared to an embedded ARM pro-
cessor with customized DSP instructions, a classical DSP,
and an independent DLA-DSP architecture respectively.

II. RELATED WORK & MOTIVATION

A. Related Work

In the ever-evolving era of artificial intelligence (AI), deep
learning that dominates existing AI techniques is increasingly
applied in IoT devices, and has become a major workload
in IoTs processors. The continuously growing importance of
deep learning in IoTs stimulates the emergence of many new
IoT processors recently. Unlike high-performance processors,
IoT processors encounter more severe power, chip area, and
performance constraints. They must not only efficiently exe-
cute a wide range of deep learning algorithms, but also cater to
diverse workloads such as signal processing and data analytics,
which presents a new challenge, outpacing the capabilities
of classical deep learning accelerators (DLAs). Despite the
computing efficiency of typical DLAs, they generally fall
short in adaptability for non-AI tasks, highlighting the urgent
demand for both efficient and flexible solutions.

An intuitive approach is to reuse general purposed proces-
sors and build deep learning frameworks by optimizing deep
learning operators. Typical deep learning frameworks such
as TinyEngine [11] and Cmix-NN [10] have demonstrated
significant performance speedup over the direct deep learning

processing on MCUs widely used in IoT devices. However,
they are usually limited to lightweight models and much less
energy-efficient compared to specialized DLAs. A straightfor-
ward approach to achieve high energy efficiency is to integrate
customized accelerators such as DLAs and DSPs on demand.
Hence, for many intelligent IoTs [13] with various sensors, a
DLA and a DSP is utilized for deep learning and signal pro-
cessing respectively. Despite the improved energy efficiency,
it takes up more chip area and incurs higher price eventually,
which is generally unacceptable for cost-sensitive IoT devices.
In addition, when deep learning and signal processing are
sequentially utilized for intelligent sensing, they typically need
to communicate through the shared memory which poses
negative influence on the overall performance and energy
efficiency. A relatively more practical solution is to build deep
learning engines on top of DSP processors [5] [6] [23] [7] or
extend general purposed processors with customized instruc-
tions [15] [18] optimized for the target computing kernels.
These architectures greatly improve the performance of deep
learning without compromising the flexibility of the computing
engines. Nevertheless, since the baseline architectures i.e. DSP
and GPPs are designed for signal processing and generic tasks,
the performance for deep learning is generally suboptimal due
to the lack of native hardware for deep learning.

Other than the extension on top of classical processors,
coarse-grained reconfigurable arrays (CGRAs) [24] [25] [26]
that enable rapid runtime reconfiguration for various applica-
tions are also explored for computing engines of IoTs. They
achieves very good balance between performance and flexi-
bility for a number of different computing kernels. However,
deep learning is much more compute-intensive and memory-
intensive compared to the signal processing tasks according to
the experiments in II-B, while CGRAs generally take all the
different tasks equally and the controlling overhead is much
higher compared to typical DLAs with streamed data flow
architecture. Thus, when we take both deep learning workloads
and non-deep-learning workloads like signal processing as
a whole, a more appropriate approach is to optimize deep
learning with higher priority, and the less compute-intensive
and memory-intensive workloads with lower priority according
to Amdahl’s law. In this case, we opt to extend DLA rather
than DSP, reusing the DLA architecture to implement some
DSP functions without affecting the deep learning workloads.

B. Motivation

As mentioned, signal processing and neural network pro-
cessing are vital workloads for intelligent sensing in many
IoTs. Before proceeding with the design of a unified architec-
ture, we investigate the computing requirements of signal pro-
cessing and neural network processing first. Specifically, we
take FFT and FIR as the typical signal processing workloads,
and take Tiny-VGGNet [27] and UltraNet [28] as typical neu-
ral network processing tasks. We evaluate the computational
complexity and parameters of these workloads in Table I. It
can be observed that the computational complexity and the
amount of parameters of neural network processing workloads
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are orders of magnitude higher and larger than those of signal
processing workloads. It can be expected that neural network
processing will be the performance bottleneck when these
workloads are performed at the same time. Hence, the unified
architecture should center neural network workloads rather
than signal processing.

TABLE I
MULT-ADDS AND PARAMETERS FOR TYPICAL WORKLOADS

Workloads Input Mult-Adds Parameters
radix2-FFT 1024 complex inputs 5.12×104 5.12×103

80-tap FIR 256 inputs 2.048×104 80
Tiny-VGGNet 32 × 32 × 3 1.69×108 1.15×106

UltraNet 32 × 32 × 3 3.83×106 2.07×105

The major challenge for signal processing acceleration is
the irregular computing pattern, which has been observed in
many prior signal processing optimization studies on DSP
processors and vector processors [19] [15] [29]. To address
the problem, software based data shuffling that splits and
merges the irregular data sequences for efficient processing
on regular computing engines has been proposed. While the
software shuffling can induce frequent data transfer between
CPUs and the accelerator, we opt to build a hardware shuffling
fabric to convert the irregular computing patterns in signal
processing to regular ones such that they can be deployed
along with the neural network processing on the same regular
computing array. In this case, a unified computing architecture
can be utilized to sustain both the signal processing and neural
network processing efficiently.

III. SIGDLA ARCHITECTURE

In this section, we introduce SigDLA, a unified architecture
to support both deep learning and signal processing required
by IoT devices with intelligent sensing. As shown in Fig. 1,
it centers a classical DLA for the regular computing tasks
including convolution and GEMMs. On top of the conventional

DLA, it incorporates a programmable data reshuffling fabric.
This fabric restructures arrays in signal processing algorithms,
enabling irregular operations to be efficiently conducted on
a regular computing array without affecting deep learning
performance.

Specifically, the shuffling fabric is inserted between the data
buffer and the computing array to reorganize the shuffled data
and convert the processing to regular tensor operations. During
the conversion to tensor operations, parts of the tensors need
to be padded with fixed values which can be coefficients of
signal processing. Therefore, a padding unit is also added to
the shuffling structure. The reorganized data will be stored into
its original location in the buffer and streamed to the DLA’s
computing array without breaking the lock-step processing. In
this case, the data reorganization is almost transparent to the
computing array, which facilitates the reuse of the computing
array. While the data shuffling patterns required in typical
signal processing algorithms such as FFT and DCT can vary,
the shuffling fabric needs to be programmable such that it can
be adapted to the different shuffling patterns at runtime. The
data shuffling can be controlled with formulated instructions.
We extend the traditional DLA tensor operation instructions
with our shuffling instructions, allowing both signal processing
and deep learning workload to be compiled using the same
instruction set. These instructions are streamed to SigDLA via
an additional instruction buffer and determine the execution
order of the algorithms. The programmable shuffling fabric
and control instructions will be detailed in Section V.

As mentioned, another challenge to revisit DLAs for signal
processing is the much larger data width used in signal
processing, which mainly depends on the precision of the
sensors and can vary substantially. The data width of sensors
are typically set to be 8-bit, 12-bit, or 16-bit. In contrast, the
deep learning models used in IoT devices may be quantized
with mixed precision for the sake of less memory overhead
and higher computing efficiency. The data width of neural
networks generally range from 1-bit to 8-bit. To sustain
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the computing with distinct data width, we develop a serial
computing array based on 4-bit arithmetic operations and it can
support higher data width that are multiplies of 4 by reusing
the basic 4-bit operations in the computing array. The data
width used in the computing array can also be programmed
and controlled via our custom tensor instructions. As shown in
Fig. 1, the implementation of the variable bitwidth computing
array includes a bitwidth controller that incorporates bitwidth
configuration, as well as configurable input mapping logic and
shift logic to generate computation results with variable data
widths.

The rest components including DMA engine and sequence
controller are basic components of DLAs and could be
reused directly. DMA engine is utilized to perform the data
transfer between off-chip memory and on-chip memory. The
Sequence Controller is responsible for the controlling of the
data streamed to the computing array and it is aligned with
the execution of the instructions. For the deep learning opera-
tions, the sequence controller reads data from the data buffer
directly. For the non-deep-learning operations that require data
shuffling, it reads data from the data buffer after undergoing
the data shuffling fabric.

IV. VARIABLE BITWIDTH COMPUTING ARRAY

To accommodate the varying bitwidth requirements of sig-
nal processing and deep learning tasks while balancing the
computational efficiency and performance of SigDLA, we pro-
pose a variable bitwidth computing array. This design draws
upon the concept of existing variable bitwidth computing array
[20] [21] and incorporates shift and addition logic into the 4-bit
multiplier, enabling it to support 8-bit or 16-bit multiplication
operations. In the following sections, we will delve into the
detailed construction of this computing array within SigDLA,
and reveal the micro-architecture of the variable bitwidth
computing array through the application of corresponding data
mapping rules.

A. Mapping Variable Bitwidth Operations

To explain how the computing array achieves multiplication
under variable bitwidth, the following discussion uses 8-bit
multiplication as an example. As mentioned, 8-bit multipli-
cation can be decomposed into 4-bit multiplication. Fig. 2(a)
illustrates the characteristics of multiplying 8-bit operands A8b

and W8b to produce the final result. The 8-bit multiplication
in Fig. 2(a) is decomposed into four 4-bit multiplications,
and the decomposed multiplication is generated using a 4-bit
multiplier. The results generated by each 4-bit multiplier need
to be shifted before addition. For the 8-bit × 8-bit case, the
shifts of the four multiplications are in order of 0, 4, 4, and
8, as shown in Fig. 2(b). The same mathematical properties
can be recursively applied to 16-bit multiplication. Firstly,
the 16-bit multiplication is recursively decomposed into 8-
bit multiplication, and then further into 4-bit multiplication.
Each level of recursion from 16-bit to 8-bit and from 8-bit
to 4-bit requires additional shift-add logic. The next section
details the design of a variable-bitwidth computing array that
performs variable-bitwidth multiplication and addition using
4-bit multipliers, capable of handling multiplications up to 16-
bit.

B. Micro-Architecture

As shown in Fig. 2(c), the SigDLA computing array consists
of eight precision-scalable PEs, with each PE containing 16
4-bit multipliers. Channel data from pixels or feature maps
is mapped into each PE, and all PEs share the same input
feature map. The 16 4-bit multipliers inside each PE perform
parallel multiplication operations in the input channel direc-
tion. The weight for each PE comes from a convolutional
kernel, supporting the simultaneous computation of up to
eight convolutional kernels. Bitwidth information from the
bitwidth controller is sent internally by the global controller.
The configurable input mapping logic consists of multiplexers,
and the selection signals for the multiplexers are generated
by the bit controller’s decoding. For different multiplication
configurations, the selection signals for the multiplexers have
different values. The implementation of the configurable shift
logic also depends on the bitwidth configuration information
from the bitwidth controller to produce different outputs from
the multiplexers. The maximum shift is 24, occurring during
a 16-bit × 16-bit multiplication.

V. PROGRAMMABLE DATA SHUFFLING

This section analyzes the methods for implementing data
shuffling in the DLA. The DLA computing array can ef-
ficiently handle matrix operations. By mapping signal pro-
cessing algorithms to convolutional layers, the DLA acquires



signal processing capabilities. We have observed that the data
sequences in the convolutional layers of the DLA exhibit
certain regularities, and signal processing algorithms can be
mapped to convolutional layers through data shuffling. How-
ever, the required data shuffling rules vary for different signal
processing algorithms. Establishing a universal data shuffling
logic is crucial for enabling the DLA to support arbitrary signal
processing algorithms. In the following, we will delve deeper
into the key technologies for implementing signal processing
in the DLA.

A. Mapping Signal Processing Operations to Convolution

The signal processing algorithms, such as FFT, DCT, FIR,
and DWT, are not regular matrix operation formats, but many
signal processing algorithms can be transformed into matrix
operations after processing [18] [15] [30], and have some
similarities [5] [31] with convolution operations in CNN. It
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Fig. 3. Mapping different signal processing algorithms to convolution.

can be seen from Fig. 3(a) that in the butterfly operation of the
2-point FFT, the butterfly factor is mapped to the feature map
part of the convolution layer, and the signal data is mapped
to the convolution kernels, where wr and wi are the real
and imaginary parts of the butterfly factor, qr and qi are the
real and imaginary parts of xm(q), pr and pi are the real
and imaginary parts of xm(p). Fig. 3(b) shows the schematic
diagram of FIR mapping to convolution layer. The input part
x of FIR is mapped to the feature map and h is mapped to the
convolution kernel. Fig. 3(c) and (d) show the DCT algorithm
and the DWT algorithm. Their regular matrix operations can
be efficiently mapped to convolution layer.

B. Micro-Architecture
As previously analyzed, the core challenge in implementing

signal processing on the DLA lies in the artful transformation
of irregular arithmetic operations into matrix operations within
the convolutional layers of a CNN. This transformation is
necessary because the original data formats used in signal
processing algorithms are often complex and irregular, making
it challenging to directly adapt them to the operational mode
of the DLA. Therefore, an effective shuffling mechanism must
be designed to convert the original data into a matrix format
that is compatible with CNN processing, enabling efficient and
accurate signal processing. This section provides a thorough
exposition of the micro-architecture of the shuffling fabric. Fig.
4 shows the micro-architecture of the shuffling fabric, where
the shuffling fabric comprises a Buffer Controller Interface
(BCIF), a Data Shuffling Unit (DSU), and a Data Padding
Unit (DPU). In the following sections, we will delve into the
functionality and operation of each of these modules in detail.

1) Buffer Controller Interface: The BCIF includes read
control logic and write control logic, as well as a register
file containing configuration information. The register file is
used to store instructions that are sent to the global controller
through the top-level port of the module by the Host Processor.
The global controller then distributes the instructions to the
register file within the BCIF based on address allocation.
The read control logic generates corresponding read addresses
and read sequence lengths based on the configuration of the
register file. The write control logic writes the post-processed
data back to the original address after the DPU completes
its work. The write control logic needs to specify the data
type being written back to the on-chip memory. The BCIF
incorporates a data buffer unit to store a certain amount of
data for use by the DSU. Typically, pre-fetched data is divided
into two parts, such as feature map data and weights in
deep learning, or preprocessed signals and weights in signal
processing. These two parts of data are stored in separate
continuous bank units following different starting addresses.

2) Data Shuffling Unit: The DSU retrieves data from
the BCIF data buffer and shuffles it accordingly. The DSU
includes a register file that stores the configurations for the
data reshuffling process. The shuffling logic is implemented
through a shuffling array, which comprises 16 shuffling units,
each with identical functionality. The shuffling unit selects one
data from 16 64-bit input data through the first multiplexer.
This selected data is then separated into 4-bit units and stored
sequentially in 16 registers. Subsequently, the second multi-
plexer selects one data from these 16 registers and places it in
a specific 4-bit position of a new 64-bit register. Altogether, the
16 shuffling units can process sixteen 64-bit data in parallel,
with each shuffling unit outputting a 4-bit data. By connecting
the outputs of all 16 shuffling units, a new 64-bit data is
obtained.

3) Data Padding Unit: The DPU is primarily responsible
for padding operations on shuffled data. Some signal pro-
cessing algorithms, such as the butterfly operation in FFT,
require specific positions to be filled with a fixed value of
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“1” after being converted into matrix operations. The DPU
is capable of padding specific constants within the matrix
after signal processing algorithms like FFT are converted into
matrix operations. For a 64-bit data, when the bitwidth is 4-bit,
8-bit, and 16-bit, the number of valid padding position for the
64-bit data is 16, 8, and 4, respectively. The effective bitwidth
of the padding values is 16-bit, 8-bit, and 4-bit, in order. The
padding process is influenced by the bitwidth. After receiving
data from the DFU, the DPU generates processed data based
on bitwidth configuration information, the position of padding,
and the padding value information stored in the register file.

C. Shuffling Instructions

This section explains the implementation of the instruction
corresponding to the programmable data shuffling hardware.
These instructions provide a software-level abstraction, allow-
ing programs written by the CPU to conveniently utilize data
shuffling techniques, effectively implementing various signal
processing algorithms on the SigDLA. As shown in Fig. 5, the
functions of the instructions can be divided into the following
sections.

Managing memory access for BCIF. The rd-buf/wr-buf in-
structions control the reading and writing of on-chip memory.
The rd-buf instruction occurs before data shuffling, used to
read the required amount of data into the BCIF. The wr-
buf instruction occurs after shuffling, writing the data back
to the specified location in on-chip memory. The bank-start
and bank-offset generate address information, while length
determines the number of read sequences.

Control the bitwidth configuration of the SigDLA. The ctrl-
bitwidth instruction is used to specify the bitwidth of operands
to ensure correct data processing and computation. Modules

that utilize bitwidth include the variable-bitwidth computing
array of the SigDLA and the data padding unit.

Configure the DSU to generate specific shuffling rules. The
ctrl-shuffling instruction controls the rules of data shuffling.
It selects one of the sixteen units in the DSU using unit-num
and controls the unit’s behavior using sel-code and split-code.
The finish-flag is used to determine if all the units currently
required for the task have been fully configured.

Control the DPU to padding data. The ctrl-padding in-
struction controls the rules of data padding. The padding
configuration, including padding-position and padding-value,
written through ctrl-padding, is used to select the location and
value for data padding.
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ctrl-bitwidth

Bit allocation

ctrl-shuffling

ctrl-padding

32-bits

data-bitwidth weight-bitwidth

bank-start bank-offset length

unit-num sel-code split-code

padding-position padding-value

finish-flag

X

X

X

bank-start bank-offset

Fig. 5. Shuffling Instruction.

Fig. 6 shows a case study. Four data items are retrieved
from the on-chip memory using the rd-buf instruction. Based
on ctrl-shuffling, four 16-bit data segments are extracted from
the four 64-bit data items and recombined into a new data
item. Subsequently, the lowest 8 bits are padded using the ctrl-
padding instruction, and finally, the new data item is written
back to the on-chip memory through the wr-buf instruction.
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1211
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data

...
...

after shuffling

after padding

302f 2625 1413 0a09

302f 2625 1413 0a10
ff

(a) Instruction Example (b) Process corresponding to code

ctrl-bitwidth,  0x10001

BCIF instruction

DSU instruction

DPU instruction

Bitwidth instruction

wr-buf,            0xff

Fig. 6. An example of data shuffling using instructions.

VI. EVALUATION

A. Experiment Setup

We use Verilog to implement SigDLA on the basis of small-
NVDLA, and we have developed a cycle accurate simulator
for SigDLA, providing a high-precision simulation environ-
ment for algorithm performance evaluation. We use Synopsys
Design Compiler to synthesize SigDLA at the UMC 55nm
technology node. Design Compiler provides the chip area, fre-
quency, and power consumption. UltraNet [28], Tiny-VGGNet
[27], ResNet20 [32], FFT, 2D-DCT, and FIR were selected
as benchmarks to evaluate the improvement in performance
of SigDLA with variable bitwidth. When comparing different
hardware platforms, we selected ARM Cortex-M4 embedded
processor and TMS320F28x [33] digital signal processor, and
used FFT and FIR as benchmarks to evaluate the performance
and energy reduction of SigDLA in signal processing algo-
rithms. Under intelligent IoT, we chose deep learning algo-
rithms [34] for signal analysis as the benchmark evaluation and
compared SigDLA with independent DSP-DLA architectures.
During the performance evaluation, all the hardware involved
in the comparison adopted a clock frequency of 100MHZ.
The performance and power consumption data of ARM Cortex
M4 were obtained based on the MAX78000 development kit
[35], while the performance and power consumption data of
TMS320F28x were obtained based on the TMS320F28335
development kit.

B. System Specifications

As shown in Table II, using UMC 55nm technology for
synthesis, SigDLA has a chip area of 5.21mm2, a leakage
power consumption of 2.02mW at a working voltage of 1.2V,
and a total power consumption of 302.5mW. The total size
of on-chip memory is 144KB, of which 16KB is dedicated
to signal processing algorithms. Compared to small-NVDLA,
the chip area of SigDLA has increased by 17%, and the total
power consumption has increased by 9.4%. SigDLA supports
signal processing algorithms such as FFT, FIR, and DCT,

which are not supported by small-NVDLA. SigDLA supports
4-bit, 8-bit and 16-bit data types, while small-NVDLA only
supports 8-bit.

TABLE II
HARDWARE OVERHEAD COMPARISON BETWEEN SMALL-NVDLA AND

SIGDLA

small-NVDLA SigDLA
Technology 55nm 55nm

Core Area(mm2) 4.45 5.21
Frequency(MHz) 100 100
On-chip memory 128KB 128KB + 16KB

Voltage(V) 1.2V 1.2V
Total Power(mW) 276.4 302.5

Leakage(mW) 1.72 2.02
Data Types(Bit) 8-bit 4-bit, 8-bit, 16-bit

Algorithm Support DNN DNN, DSP

C. Performance and Energy Comparison

1) Variable-bitwidth Performance Comparison: Based on
the SigDLA simulator, we tested the variable bitwidth bench-
mark in detail in the 100MHz simulation environment. For
the CNN benchmark, when the input is 32 × 32 × 3, the
experimental results show that SigDLA shows the shortest
inference time under 4-bit × 4-bit. As shown in Fig. 7(a),
at a typical frequency of 100MHz, the bandwidth of off-chip
memory is set to 1600MB/s [36]. TinyVGG-Net, ResNet20
and UltraNet achieve 16×, 15.82× and 12.37× speedup at
4-bit × 4-bit compared with 16-bit × 16-bit. For the DSP
benchmark, as shown in Fig. 7(b), the benchmark of DSP is
less affected by bandwidth, because its parameter quantity is
far less than that of deep learning algorithm. The 128 point
complex FFT, 2D-DCT and 200 point 8-taps FIR achieve
3.15×, 3.97× and 3.99× speedup than 16-bit × 16-bit at 8-bit
× 8-bit. The speedup of FFT is significantly lower than that
of DCT and FIR, mainly because more shuffling operations
are required for converting FFT to convolution operations and
the computational complexity of FFT is higher.

(a) CNN workloads under variable bit width (b) DSP workloads under variable bit width
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Fig. 7. Variable-bitwidth speedup on CNN and DSP workloads.

2) Signal Processing Algorithm Comparison: To more ac-
curately evaluate the performance and power consumption
of SigDLA in signal processing algorithms, we conducted a
thorough comparison between it and two processors. Among
them, ARM Cortex-M4 utilizes the CMSIS-DSP library to run
signal processing algorithms. As shown in Fig. 8, we selected
the FFT and FIR algorithms for testing in signal processing.



For the FFT algorithm test, we employed 16-bit complex
inputs and evaluated performance at 1024 points, 512 points,
256 points, and 128 points. Regarding the FIR algorithm, we
tested the performance of a 256-point sampled signal with
filter taps of 20, 40 and 80. After comparison, we found that
SigDLA outperformed both TMS320F28x and ARM Cortex-
M4 in terms of FFT and FIR algorithms. Specifically, SigDLA
achieved an average performance speedup of 1.4× and 3.27×
energy reduction compared to TMS320F28x, while compared
to ARM Cortex-M4, SigDLA achieved a performance speedup
of 4.4× and an energy reduction of 4.82×.

(a)  SigDLA Performance Speedup over M4 and TMS320F28x

(b)  SigDLA Energy Reduction Improvement over M4 and TMS320F28x
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Fig. 8. Performance and Energy Reduction of signal processing algorithms.

3) CNN-Based Signal Processing Algorithm Comparison:
The core objective of our design is to enhance the energy
efficiency of intelligent IoT devices that concurrently use
digital signal processing and deep learning analysis. Therefore,
we utilize the CNN-Based Signal Processing Algorithm to test
our design. As shown in Fig. 9, the input speech signal is first
processed by FFT algorithm and converted to frequency do-
main. Then, the feature of the processed signal is extracted and
input into the subsequent CNN model. CNN model generates a
mask that can effectively shield the noise in the speech signal
and significantly improve the speech intelligibility. Then, the
denoised signal is converted back to the time domain to present
a better sound effect.

FFT CNN

IFFT Masking

Feature
Extraction

7frames  161 
Noisy Signal

7frames  161 
Denoising Signal

R
es
u
lt

Fig. 9. CNN-based speech enhancement algorithm.

To evaluate the performance and power consumption of
different architectures in handling this task, we chose SigDLA
and an independent DSP-DLA architecture for compari-
son. The independent DSP-DLA architecture combines the
TMS320F28x processor and small-NVDLA. In the processing
of FFT algorithm, we use 8-bit data type. For SigDLA, we

use 8-bit pixel format and 4-bit weight format, while small
NVDLA uses the 8-bit × 8-bit data type. The independent
DSP-DLA architecture requires the FFT results calculated by
the TMS320F28x processor to be written into off-chip memory
during processing, which is then read by small-NVDLA. This
process involves data transmission and storage. In contrast,
SigDLA is continuous in the switching process between FFT
and CNN, without writing data to off-chip memory and then
reading, thus reducing the overhead of data transmission. As
shown in Fig. 10, SigDLA achieves 1.52× speedup and 2.15×
energy reduction than the independent DSP-DLA architecture
in the coexistence of signal processing analysis and deep
learning. This remarkable acceleration effect is mainly due to
the fact that SigDLA does not need to communicate between
hardware and its efficient signal processing speed.

(a) Execution Time Comparison

(b) Energy Consumption Comparison
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Fig. 10. Performance and Energy Consumption of CNN-Based Signal
Processing Algorithm.

VII. CONCLUSION

In this paper, we present a unified computing architecture
SigDLA based on a typical DLA to achieve efficient signal
processing and deep learning that are typically required in
many intelligent sensing scenarios. While signal process-
ing like FFT usually involves many irregular data shuffling
and computing and cannot be directly applied on a typical
DLA targeting only regular operations like convolution and
GEMMs, we propose an online data shuffling fabric to convert
the irregular operations within signal processing to regular
tensor operations such that typical signal processing tasks can
also be implemented on the same computing array of DLAs.
Moreover, we also leverage a flexible computing array with
variable bit width such as 4-bit, 8-bit, and 16-bit to suit the
diverse data width requirements of both deep learning and
signal processing. According to our experiments on a set of
signal processing and deep learning tasks, SigDLA achieves
an average performance speedup of 4.4×, 1.4×, and 1.52×,
and an average energy reduction of 4.82×, 3.27×, and 2.15×
compared to an embedded ARM processor with customized
DSP instructions, DSP processor, and independent DSP-DLA
architecture, while it takes only 17% more chip area than the
original DLA.
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