
On generalisation and learning:
Generalisation bounds for deep neural networks

Benjamin Guedj
https://bguedj.github.io

7 @bguedj

JdS
MALIA, June 9, 2021

1 25

https://bguedj.github.io


Learning is to be able to generalise

[Credits: Wikipedia]

From examples, what can a system
learn about the underlying
phenomenon?

Memorising the already seen data is
usually bad −→ overfitting

Generalisation is the ability to
’perform’ well on unseen data.

2 25



Is deep learning breaking statistical learning theory?

Neural networks architectures trained on massive datasets achieve zero
training error which does not bode well for their performance: this
strongly suggests overfitting...

... yet they also achieve remarkably low errors on test sets!

3 25



A famous plot...

R
is
k

Training risk

Test risk

Complexity of H
sweet spot

under-fitting over-fitting

Belkin et al. (2019)

4 25



... which might just be half of the picture
R
is
k

Training risk

Test risk

Complexity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Belkin et al. (2019)

5 25



A tale of two learners

On our left: a deep neural network

Typically identifies a specific item (say, a horse) in an image with
accuracy > 99%.
Training samples: millions of annotated images of horses –
GPU-expensive training.

6 25



A tale of two learners

On our right: the next generation

Identify horses with 100%
accuracy. Also very good at
transferring to e.g. zebras

Training samples: a handful of
children books, bedtime stories
and (poorly executed)
drawings.

Also expensive training.

7 25



Learning is to be able to generalise...

... but not from scratch! Tackling
each learning task as a fresh draw
unlikely to be efficient – must not be
blind to context.

Need to incorporate structure /
semantic information / implicit
representations of the ”sensible”
world.

Should lead to better algorithms
design (more ”intelligent”, frugal /
resources-efficient, etc.)

8 25



ICML 2019 Tutorial
A Primer on PAC-Bayesian Learning

https://bguedj.github.io/icml2019/index.html

9 25

https://bguedj.github.io/icml2019/index.html


Generalisation
Loss function `(h(X ),Y ) to measure the discrepancy between a
predicted output h(X ) and the true output Y .

Empirical risk: Rin(h) = 1
m

∑m
i=1 `(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[
`(h(X ),Y )

]
(out-of-sample)

If predictor h does well on the in-sample (X ,Y ) pairs...
...will it still do well on out-of-sample pairs?

Generalisation gap: ∆(h) = Rout(h) − Rin(h)

Upper bounds: with high probability ∆(h) 6 ε(m, δ)

I Rout(h) 6 Rin(h) + ε(m, δ)
Flavours:

distribution-free

algorithm-free

distribution-dependent

algorithm-dependent

10 25



The PAC (Probably Approximately Correct) framework

In a nutshell: with high probability, the generalisation error of an
hypothesis h is at most something we can control and even compute.
For any δ > 0,

P

[
Rout(h) 6 Rin(h) + ε(m, δ)

]
> 1 − δ.

Think of ε(m, δ) as Complexity × log 1
δ√

m .

This is about high confidence statements on the tail of the distribution of
test errors (compare to a statistical test at level 1 − δ).

PAC-Bayes is about PAC generalisation bounds for distributions over
hypotheses.

11 25



Why should I care about generalisation?

Generalisation bounds are a safety check: they give a theoretical
guarantee on the performance of a learning algorithm on any unseen
data.

Generalisation bounds:

provide a computable control on the error on any unseen data with
prespecified confidence

explain why some specific learning algorithms actually work

and even lead to designing new algorithms which scale to more
complex settings

12 25



A classical PAC-Bayesian bound
Pre-history: PAC analysis of Bayesian estimators
Shawe-Taylor and Williamson (1997)

Birth: PAC-Bayesian bound
McAllester (1998, 1999)

Prototypical bound

For any prior P, any δ ∈ (0, 1], we have

Pm

∀Q onH : Rout(Q) 6 Rin(Q) +

√
KL(Q‖P) + ln 2

√
m
δ

2m

 > 1 − δ ,

with Rin(Q) ≡
∫
H

Rin(h) dQ(h), Rout(Q) ≡
∫
H

Rout(h) dQ(h),
KL(Q‖P) = E

h∼Q
ln Q(h)

P(h) .

Want to know more? Guedj (2019) +
https://bguedj.github.io/talks/

13 25

https://bguedj.github.io/talks/


PAC-Bayes-driven learning algorithms
With an arbitrarily high probability and for any posterior distribution Q,

Error on unseen data 6 Error on sample+ complexity term

Rout(Q) 6 Rin(Q) + F (Q, ·)

This defines a principled strategy to obtain new learning algorithms:

h ∼ Q?

Q? ∈ arg inf
Q�P

{
Rin(Q) + F (Q, ·)

}
(optimisation problem which can be solved or approximated by
[stochastic] gradient descent-flavoured methods, Monte Carlo Markov
Chain, variational inference...)

SVMs, KL-regularized Adaboost, exponential weights are all minimisers
of PAC-Bayes bounds.

14 25



Generalisation guarantees for
Binary activated DNNs

Letarte, Germain, Guedj and Laviolette (2019). Dichotomize and
generalize: PAC-Bayesian binary activated deep neural networks,

NeurIPS 2019.

15 25



Standard Neural Networks
Classification setting:

x ∈ Rd0

y ∈ {−1, 1}

Architecture:

L fully connected layers

dk denotes the number of neurons of
the k th layer

σ : R→ R is the activation function

Parameters:

Wk ∈ Rdk×dk−1 denotes the weight
matrices, D =

∑L
k=1 dk−1dk .

θ= vec
(
{Wk }

L
k=1

)
∈RD

x1 · · · xd

σ σ σ

σ σ σ

σ

Prediction

fθ(x) = σ
(
wLσ

(
WL−1σ

(
. . .σ

(
W1x

))))
.

16 25



PAC-Bayesian bounds for Stochastic NN

Langford and Caruana (2001)

Shallow networks (L = 2)

Sigmoid activation functions 5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

Dziugaite and Roy (2017)

Deep networks (L > 2)

ReLU activation functions 5.0 2.5 0.0 2.5 5.0
0

2

4

6

Idea: Bound the expected loss of the network under a Gaussian
perturbation of the weights

Empirical loss: E
θ ′∼N(θ,Σ)

Rin(fθ ′) −→ estimated by sampling

Complexity term: KL(N(θ,Σ)‖N(θ0,Σ0)) −→ closed form

17 25



Binary Activated Neural Networks
x ∈ Rd0

y ∈ {−1, 1}

Architecture:

L fully connected layers

dk denotes the number of neurons of
the k th layer

sgn(a) = 1 if a > 0 and sgn(a) = −1
otherwise

Parameters:

Wk ∈ Rdk×dk−1 denotes the weight
matrices.

θ= vec
(
{Wk }

L
k=1

)
∈RD

x1 · · · xd

sgn sgn sgn

sgn sgn sgn

sgn

Prediction

fθ(x) = sgn
(
wLsgn

(
WL−1sgn

(
. . . sgn

(
W1x

))))
,

18 25



Building block: one layer (aka linear predictor)

Letarte et al. (2019)

Model fw(x)
def
= sgn(w · x), with w ∈ Rd .

Linear classifiers Fd
def
= {fv|v ∈ Rd }

Predictor Fw(x)
def
= Ev∼Qw fv(x) = erf

(
w·x√
d‖x‖

)
Sampling + closed form of the KL + a few
other tricks + extension to an arbitrary number
of layers

2 0 2
1.0

0.5

0.0

0.5

1.0 erf(x)
tanh(x)
sgn(x)

x1 x2 · · · xd

sgn

19 25



Two Layers (shallow network)

x1 · · · xd

sgn sgn sgn

sgn

20 25



Two Layers (shallow network)
Posterior Qθ = N(θ, ID), over the family of all networks
FD = {fθ̃ | θ̃ ∈ RD}, where

fθ(x) = sgn
(
w2 · sgn(W1x)

)
.

Fθ(x) = E
θ̃∼Qθ

fθ̃(x)

=

∫
Rd1×d0

Q1(V1)

∫
Rd1

Q2(v2)sgn(v2 · sgn(V1x))dv2dV1

=

∫
Rd1×d0

Q1(V1) erf
(

w2·sgn(V1x)√
2‖sgn(V1x)‖

)
dV1

=
∑

s∈{−1,1}d1

erf
(

w2·s√
2d1

) ∫
Rd1×d0
1[s = sgn(V1x)]Q1(V1) dV1

=
∑

s∈{−1,1}d1

erf

(
w2 · s√

2d1

)
︸ ︷︷ ︸

Fw2(s)

d1∏
i=1

[
1
2
+

si

2
erf

(
wi

1 · x√
2 ‖x‖

)]
︸ ︷︷ ︸

Pr(s|x,W1)

.

21 25



Generalisation bound

Let Fθ denote the network with parameter θ. With probability at least
1 − δ, for any θ ∈ RD

Rout(Fθ) 6

inf
C>0

{
1

1 − e−C

(
1 − exp

(
−CRin(Fθ) −

KL(θ, θ0) + log 2
√

m
δ

m

)) }
.

22 25



Numerical experiments

Model name Cost function Train split Valid split Model selection Prior

MLP–tanh linear loss, L2 regularized 80% 20% valid linear loss -
PBGNet` linear loss, L2 regularized 80% 20% valid linear loss random init
PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre
– pretrain linear loss (20 epochs) 50% - - random init
– final PAC-Bayes bound 50% - PAC-Bayes bound pretrain

Dataset
MLP–tanh PBGNet` PBGNet PBGNetpre

Rin Rout Rin Rout Rin Rout Bound Rin Rout Bound

ads 0.021 0.037 0.018 0.032 0.024 0.038 0.283 0.034 0.033 0.058
adult 0.128 0.149 0.136 0.148 0.158 0.154 0.227 0.153 0.151 0.165
mnist17 0.003 0.004 0.008 0.005 0.007 0.009 0.067 0.003 0.005 0.009
mnist49 0.002 0.013 0.003 0.018 0.034 0.039 0.153 0.018 0.021 0.030
mnist56 0.002 0.009 0.002 0.009 0.022 0.026 0.103 0.008 0.008 0.017
mnistLH 0.004 0.017 0.005 0.019 0.071 0.073 0.186 0.026 0.026 0.033

23 25



Quest for generalisation guarantees (about half via PAC-Bayes)

Directions:
Generic bounds (relaxing assumptions such as iid or boundedness,
new concentration inequalities, . . . )
Tight bounds for specific algorithms (deep neural networks, NMF,
. . . )
Towards new measures of performance (CVaR, ranking, contrastive
losses, . . . )
Coupling theory and implemented algorithms: bound-driven
algorithms
Applications (providing guidelines to machine learning users,
sustainable / frugal machine learning)

24 25



References I

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical bias–variance trade-off.
Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019. ISSN 0027-8424. doi:
10.1073/pnas.1903070116. URL https://www.pnas.org/content/116/32/15849.

G. K. Dziugaite and D. M. Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more
parameters than training data. In Proceedings of Uncertainty in Artificial Intelligence (UAI), 2017.

B. Guedj. A Primer on PAC-Bayesian Learning. In Proceedings of the second congress of the French Mathematical Society, 2019.
URL https://arxiv.org/abs/1901.05353.

J. Langford and R. Caruana. (Not) Bounding the True Error. In NIPS, pages 809–816. MIT Press, 2001.

G. Letarte, P. Germain, B. Guedj, and F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural
Networks. In NeurIPS, 2019.

D. McAllester. Some PAC-Bayesian theorems. In Proceedings of the International Conference on Computational Learning Theory
(COLT), 1998.

D. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37, 1999.

J. Shawe-Taylor and R. C. Williamson. A PAC analysis of a Bayes estimator. In Proceedings of the 10th annual conference on
Computational Learning Theory, pages 2–9. ACM, 1997. doi: 10.1145/267460.267466.

25 25

https://www.pnas.org/content/116/32/15849
https://arxiv.org/abs/1901.05353

	References

