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Greetings!

Principal research fellow (∼ associate professor) at UCL CS and AI,

Tenured research scientist at Inria (Lille - Nord Europe),

Scientific director of the Inria London joint lab with UCL CS and AI,

Visiting researcher with The Alan Turing Institute.

In the absence of pandemic, you can find me at 90HH, office 1.25L.

PhD in mathematics. Interests: statistical
learning theory, PAC-Bayes, computational
statistics, generalisation bounds for deep
learning, and many others

Most recent research: coupling machine
learning and sleep deprivation.
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What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


What to expect

I will...

Provide an overview of what PAC-Bayes is

Illustrate its flexibility and relevance to tackle modern machine
learning tasks, and rethink generalisation

Cover key ideas and a few results

Focus on some recent contributions from my group: ranking,
non-iid, deep nets, constrative learning

I won’t...

Cover all of our ICML 2019 tutorial!
See https://bguedj.github.io/icml2019/index.html

Cover our NIPS 2017 workshop ”(Almost) 50 Shades of Bayesian
Learning: PAC-Bayesian trends and insights”
See https://bguedj.github.io/nips2017/

3 48

https://bguedj.github.io/icml2019/index.html
https://bguedj.github.io/nips2017/


Take-home message

PAC-Bayes is a generic framework to efficiently rethink generalisation for
numerous machine learning algorithms. It leverages the flexibility of

Bayesian learning and allows to derive new learning algorithms.

MSc interns, PhD students, postdocs, visiting researchers

4 48
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Part I
A Primer on PAC-Bayesian Learning

ICML 2019 tutorial

John

https://bguedj.github.io/icml2019/index.html

Survey in the Journal of the French Mathematical Society: Guedj (2019)
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Learning is to be able to generalise

[Figure from Wikipedia]

From examples, what can a system
learn about the underlying
phenomenon?

Memorising the already seen data is
usually bad −→ overfitting

Generalisation is the ability to
’perform’ well on unseen data.
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Statistical Learning Theory is about high confidence

For a fixed algorithm, function class and sample size, generating random
samples −→ distribution of test errors

Focusing on the mean of the error distribution?

. can be misleading: learner only has one sample

Statistical Learning Theory: tail of the distribution

. finding bounds which hold with high probability

over random samples of size m

Compare to a statistical test – at 99% confidence level

. chances of the conclusion not being true are less than 1%

PAC: probably approximately correct (Valiant, 1984)
Use a ‘confidence parameter’ δ: Pm[large error] 6 δ
δ is the probability of being misled by the training set

Hence high confidence: Pm[approximately correct] > 1 − δ
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Mathematical formalisation

Learning algorithm A : Zm → H

• Z = X× Y

X = set of inputs
Y = set of outputs (e.g.
labels)

• H = hypothesis class
= set of predictors

(e.g. classifiers)
functions X→ Y

Training set (aka sample): Sm = ((X1,Y1), . . . , (Xm,Ym))
a sequence of input-output examples.

• Data-generating distribution P over Z
• Learner doesn’t know P, only sees the training set

• Examples are i.i.d.: Sm ∼ Pm
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What to achieve from the sample?

Use the available sample to:

1 learn a predictor

2 certify the predictor’s performance

Learning a predictor:

• algorithm driven by some learning principle

• informed by prior knowledge resulting in inductive bias

Certifying performance:

• what happens beyond the training set

• generalisation bounds

Actually these two goals interact with each other!

9 48
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Risk (aka error) measures

A loss function `(h(X ),Y ) is used to measure the discrepancy between
a predicted output h(X ) and the true output Y .

Empirical risk: Rin(h) = 1
m

∑m
i=1 `(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[
`(h(X ),Y )

]
(out-of-sample)

Examples:

• `(h(X ),Y ) = 1[h(X ) 6= Y ] : 0-1 loss (classification)

• `(h(X ),Y ) = (Y − h(X ))2 : square loss (regression)

• `(h(X ),Y ) = (1 − Yh(X ))+ : hinge loss

• `(h(X ), 1) = − log(h(X )) : log loss (density estimation)
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Generalisation

If predictor h does well on the in-sample (X ,Y ) pairs...
...will it still do well on out-of-sample pairs?

Generalisation gap: ∆(h) = Rout(h) − Rin(h)

Upper bounds: w.h.p. ∆(h) 6 ε(m, δ)

I Rout(h) 6 Rin(h) + ε(m, δ)

Lower bounds: w.h.p. ∆(h) > ε̃(m, δ)

Flavours:
distribution-free

algorithm-free

distribution-dependent

algorithm-dependent
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Why you should care about generalisation bounds

Generalisation bounds are a safety check: give a theoretical guarantee
on the performance of a learning algorithm on any unseen data.

Rout(h) 6 Rin(h) + ε(m, δ)

Generalisation bounds:

may be computed with the training sample only, do not depend on
any test sample

provide a computable control on the error on any unseen data with
prespecified confidence

explain why specific learning algorithms actually work

and even lead to designing new algorithm which scale to more
complex settings

12 48
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Before PAC-Bayes

Single hypothesis h (building block):

with probability > 1 − δ, Rout(h) 6 Rin(h) +
√

1
2m log

( 1
δ

)
.

Finite function class H (worst-case approach):

w.p. > 1 − δ, ∀h ∈ H, Rout(h) 6 Rin(h) +
√

1
2m log

(
|H|
δ

)
Structural risk minimisation: data-dependent hypotheses hi

associated with prior weight pi

w.p. > 1 − δ, ∀hi ∈ H, Rout(hi) 6 Rin(hi) +

√
1

2m log
(

1
piδ

)
Uncountably infinite function class: VC dimension, Rademacher
complexity...

These approaches are suited to analyse the performance of individual
functions, and take some account of correlations.
−→ Extension: PAC-Bayes allows to consider distributions over
hypotheses.
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The PAC-Bayes framework

Before data, fix a distribution P ∈ M1(H) . ‘prior’

Based on data, learn a distribution Q ∈ M1(H) . ‘posterior’
Predictions:

• draw h ∼ Q and predict with the chosen h.
• each prediction with a fresh random draw.

The risk measures Rin(h) and Rout(h) are extended by averaging:

Rin(Q) ≡
∫
H Rin(h) dQ(h) Rout(Q) ≡

∫
H Rout(h) dQ(h)

KL(Q‖P) = E
h∼Q

ln Q(h)
P(h) is the Kullback-Leibler divergence.
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PAC-Bayes aka Generalised Bayes

”Prior”: exploration mechanism of H
”Posterior” is the twisted prior after confronting with data
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PAC-Bayes bounds vs. Bayesian learning

Prior

• PAC-Bayes: bounds hold for any distribution
• Bayes: prior choice impacts inference

Posterior

• PAC-Bayes: bounds hold for any distribution
• Bayes: posterior uniquely defined by prior and statistical model

Data distribution

• PAC-Bayes: bounds hold for any distribution
• Bayes: randomness lies in the noise model generating the output
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A classical PAC-Bayesian bound

Pre-history: PAC analysis of Bayesian estimators
Shawe-Taylor and Williamson (1997); Shawe-Taylor et al. (1998)

Birth: PAC-Bayesian bound
McAllester (1998, 1999)

McAllester Bound
For any prior P, any δ ∈ (0, 1], we have

Pm

∀Q onH : Rout(Q) 6 Rin(Q) +

√
KL(Q‖P) + ln 2

√
m
δ

2m

 > 1 − δ ,
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A flexible framework

Since 1997, PAC-Bayes has been successfully used in many machine
learning settings (this list is by no means exhaustive).
Statistical learning theory Shawe-Taylor and Williamson (1997); McAllester

(1998, 1999, 2003a,b); Seeger (2002, 2003); Maurer (2004); Catoni
(2004, 2007); Audibert and Bousquet (2007); Thiemann et al. (2017);
Guedj (2019); Mhammedi et al. (2019); Guedj and Pujol (2019);
Haddouche et al. (2020)

SVMs & linear classifiers Langford and Shawe-Taylor (2002); McAllester
(2003a); Germain et al. (2009a)

Supervised learning algorithms reinterpreted as bound minimizers
Ambroladze et al. (2007); Shawe-Taylor and Hardoon (2009); Germain
et al. (2009b)

High-dimensional regression Alquier and Lounici (2011); Alquier and Biau
(2013); Guedj and Alquier (2013); Li et al. (2013); Guedj and Robbiano
(2018)

Classification Langford and Shawe-Taylor (2002); Catoni (2004, 2007);
Lacasse et al. (2007); Parrado-Hernández et al. (2012)
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A flexible framework

Transductive learning, domain adaptation Derbeko et al. (2004); Bégin
et al. (2014); Germain et al. (2016); Nozawa et al. (2020)

Non-iid or heavy-tailed data Lever et al. (2010); Seldin et al. (2011, 2012);
Alquier and Guedj (2018); Holland (2019)

Density estimation Seldin and Tishby (2010); Higgs and Shawe-Taylor (2010)

Reinforcement learning Fard and Pineau (2010); Fard et al. (2011); Seldin
et al. (2011, 2012); Ghavamzadeh et al. (2015)

Sequential learning Gerchinovitz (2011); Li et al. (2018)

Algorithmic stability, differential privacy London et al. (2014); London
(2017); Dziugaite and Roy (2018a,b); Rivasplata et al. (2018)

Deep neural networks Dziugaite and Roy (2017); Neyshabur et al. (2017);
Zhou et al. (2019); Letarte et al. (2019); Biggs and Guedj (2020)

. . .

19 48



PAC-Bayes-inspired learning algorithms

With an arbitrarily high probability and for any posterior distribution Q,

Error on unseen data 6 Error on sample+ complexity term

Rout(Q) 6 Rin(Q) + F (Q, ·)

This defines a principled strategy to obtain new learning algorithms:

h ∼ Q?

Q? ∈ arg inf
Q�P

{
Rin(Q) + F (Q, ·)

}
(optimisation problem which can be solved or approximated by
[stochastic] gradient descent-flavoured methods, Monte Carlo Markov
Chain, (generalized) variational inference...)
SVMs, KL-regularized Adaboost, exponential weights are all minimisers
of PAC-Bayes bounds.
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Variational definition of KL-divergence (Csiszár, 1975; Donsker and
Varadhan, 1975; Catoni, 2004).

Let (A,A) be a measurable space.

(i) For any probability P on (A,A) and any measurable function
φ : A→ R such that

∫
(exp ◦φ)dP <∞,

log

∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
.

(ii) If φ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG
dP

(a) =
exp ◦φ(a)∫
(exp ◦φ)dP

, a ∈ A.

21 48



Variational definition of KL-divergence (Csiszár, 1975; Donsker and
Varadhan, 1975; Catoni, 2004).

Let (A,A) be a measurable space.

(i) For any probability P on (A,A) and any measurable function
φ : A→ R such that

∫
(exp ◦φ)dP <∞,

log

∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
.

(ii) If φ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG
dP

(a) =
exp ◦φ(a)∫
(exp ◦φ)dP

, a ∈ A.

21 48



Variational definition of KL-divergence (Csiszár, 1975; Donsker and
Varadhan, 1975; Catoni, 2004).

Let (A,A) be a measurable space.

(i) For any probability P on (A,A) and any measurable function
φ : A→ R such that

∫
(exp ◦φ)dP <∞,

log

∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
.

(ii) If φ is upper-bounded on the support of P, the supremum is
reached for the Gibbs distribution G given by

dG
dP

(a) =
exp ◦φ(a)∫
(exp ◦φ)dP

, a ∈ A.

21 48



log
∫
(exp ◦φ)dP = sup

Q�P

{∫
φdQ −KL(Q,P)

}
, dG

dP = exp◦φ∫
(exp◦φ)dP .

Proof: let Q � P.

−KL(Q,G) = −

∫
log

(
dQ
dP

dP
dG

)
dQ

= −

∫
log

(
dQ
dP

)
dQ +

∫
log

(
dG
dP

)
dQ

= −KL(Q,P) +

∫
φdQ − log

∫
(exp ◦φ) dP.

KL(·, ·) is non-negative, Q 7→ −KL(Q,G) reaches its max. in Q = G:

0 = sup
Q�P

{∫
φdQ −KL(Q,P)

}
− log

∫
(exp ◦φ) dP.

Let λ > 0 and take φ = −λRin,

Qλ ∝ exp (−λRin)P = arg inf
Q�P

{
Rin(Q) +

KL(Q,P)

λ

}
.
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Recap

What we’ve seen so far

Statistical learning theory is about high confidence control of
generalisation

PAC-Bayes is a generic, powerful tool to derive generalisation
bounds...

... and invent new learning algorithms with a Bayesian flavour

PAC-Bayes mixes tools from statistics, probability theory,
optimisation, and is now quickly re-emerging as a key theory and
practical framework in machine learning

What is coming next

A small sample of what PAC-Bayes can offer!
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Part II
A (gentle) walkthrough of state-of-the-art PAC-Bayes

Guedj and Robbiano (2018). PAC-Bayesian high dimensional
bipartite ranking, Journal of Statistical Planning and Inference.

Alquier and Guedj (2018). Simpler PAC-Bayesian bounds for hostile
data, Machine Learning.

Letarte, Germain, Guedj and Laviolette (2019). Dichotomize and
generalize: PAC-Bayesian binary activated deep neural networks,
NeurIPS 2019.

Nozawa, Germain and Guedj (2020). PAC-Bayesian contrastive
unsupervised representation learning, UAI.
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Bipartite ranking

(X,Y ) ∈ Rd × {±1}, iid replications {(Xi ,Yi)}
m
i=1

η(·) = P{Y = 1|X = ·}

Goal: design an order relationship on Rd which is consistent with the
order on {±1}. Scoring function s : Rd → R

∀(x, x ′) ∈ Rd × Rd , x �s x ′ ⇔ s(x) 6 s(x ′).

Idea: build s such that

∀(x, x′) ∈ Rd × Rd , s(x) 6 s(x′)⇔ η(x) 6 η(x′).
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PAC-Bayes ranking
Ranking risk of a scoring function s and empirical counterpart

L(s) = P
[
(s(X) − s(X′))(Y − Y ′) < 0

]
.

Lm(s) =
1

m(m − 1)

∑
i 6=j

1{(s(Xi)−s(Xj))(Yi−Yj)<0}.

Dictionary of deterministic functions D = {φ1, . . . ,φM },

SΘ =

sθ : x 7→
d∑

j=1

M∑
k=1

θjkφk(xj) = 〈θ,D(x)〉, θ ∈ RdM

 .

Gibbs measure Qλ(dθ) ∝ exp[−λLn(sθ)]P(dθ), λ > 0.
PAC-Bayes predictor

ŝ = s
θ̂
: x 7→

d∑
j=1

M∑
k=1

θ̂jkφk(xj) = 〈θ̂,D(x)〉, θ̂ ∼ Qλ.

MCMC implementation (Metropolised Carlin and Chib)
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Oracle generalisation bounds
For any distribution of (X,Y ), any prior P, any δ ∈ (0, 1),

P

[
L(ŝ) − L(η) 6 inf

Q�P

{∫
L(s)Q(ds) − L(η)

+
1/2 + 2 log(2/δ) + 2KL(Q,P)√

m

}]
> 1 − δ.

Optimal sparse scoring functions

P

[
L(ŝ) − L(η) 6 inf

k=1,...,d
inf

θ : |θ|0=k

{
L(sθ) − L(η)

+
3/2 + 2 log(2/δ) + log(

√
m) + k log dM

k√
m

}]
> 1 − δ.

Under a margin condition on η, we proved the first minimax optimal rates
for high dimensional bipartite ranking.
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Learning with non-iid or heavy-tailed data

We drop the iid and bounded loss assumptions.

For any integer q,

Mq :=

∫
E (|Rin(h) − Rout(h)|q) dP(h).

Csiszár f -divergence: let f be a convex function with f (1) = 0,

Df (Q,P) =

∫
f
(
dQ
dP

)
dP

when Q � P and Df (Q,P) = +∞ otherwise.

The KL is given by the special case KL(Q‖P) = Dx log(x)(Q,P).

Power function: φp : x 7→ xp.

28 48



Learning with non-iid or heavy-tailed data

We drop the iid and bounded loss assumptions. For any integer q,

Mq :=

∫
E (|Rin(h) − Rout(h)|q) dP(h).

Csiszár f -divergence: let f be a convex function with f (1) = 0,

Df (Q,P) =

∫
f
(
dQ
dP

)
dP

when Q � P and Df (Q,P) = +∞ otherwise.

The KL is given by the special case KL(Q‖P) = Dx log(x)(Q,P).

Power function: φp : x 7→ xp.

28 48



Learning with non-iid or heavy-tailed data

We drop the iid and bounded loss assumptions. For any integer q,

Mq :=

∫
E (|Rin(h) − Rout(h)|q) dP(h).

Csiszár f -divergence: let f be a convex function with f (1) = 0,

Df (Q,P) =

∫
f
(
dQ
dP

)
dP

when Q � P and Df (Q,P) = +∞ otherwise.

The KL is given by the special case KL(Q‖P) = Dx log(x)(Q,P).

Power function: φp : x 7→ xp.

28 48



Learning with non-iid or heavy-tailed data

We drop the iid and bounded loss assumptions. For any integer q,

Mq :=

∫
E (|Rin(h) − Rout(h)|q) dP(h).

Csiszár f -divergence: let f be a convex function with f (1) = 0,

Df (Q,P) =

∫
f
(
dQ
dP

)
dP

when Q � P and Df (Q,P) = +∞ otherwise.

The KL is given by the special case KL(Q‖P) = Dx log(x)(Q,P).

Power function: φp : x 7→ xp.

28 48



PAC-Bayes with f -divergences

Fix p > 1, q = p
p−1 and δ ∈ (0, 1). With probability at least 1 − δ we

have for any distribution Q

|Rout(Q) − Rin(Q)| 6

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .

The bound decouples
the moment Mq (which depends on the distribution of the data)
and the divergence Dφp−1(Q,P) (measure of complexity).

Corolloray: with probability at least 1 − δ, for any Q,

Rout(Q) 6 Rin(Q) +

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .

Again, strong incitement to define the posterior as the minimizer of the
right-hand side!

For p = q = 2, w.p. > 1 − δ, Rout(Q) 6 Rin(Q) +

√
V

mδ

∫ (
dQ
dP

)2
dP.
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Proof

Let ∆(h) := |Rin(h) − Rout(h)|.

∣∣∣∣∫ RoutdQ −

∫
RindQ

∣∣∣∣
Jensen 6

∫
∆dQ

Change of measure =

∫
∆
dQ
dP

dP

Hölder 6

(∫
∆qdP

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

Markov 6
1−δ

(
E
∫
∆qdP
δ

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

=

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .
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Hölder 6

(∫
∆qdP

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

Markov 6
1−δ

(
E
∫
∆qdP
δ

) 1
q
(∫ (

dQ
dP

)p

dP
) 1

p

=

(
Mq

δ

) 1
q (

Dφp−1(Q,P) + 1
) 1

p .

30 48



Proof
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Standard Neural Networks
Classification setting:

x ∈ Rd0

y ∈ {−1, 1}

Architecture:

L fully connected layers

dk denotes the number of neurons of
the k th layer

σ : R→ R is the activation function

Parameters:

Wk ∈ Rdk×dk−1 denotes the weight
matrices, D =

∑L
k=1 dk−1dk .

θ= vec
(
{Wk }

L
k=1

)
∈RD

x1 · · · xd

σ σ σ

σ σ σ

σ

Prediction

fθ(x) = σ
(
wLσ

(
WL−1σ

(
. . .σ

(
W1x

))))
.
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PAC-Bayesian bounds for Stochastic NN

Langford and Caruana (2001)

Shallow networks (L = 2)

Sigmoid activation functions 5.0 2.5 0.0 2.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

Dziugaite and Roy (2017)

Deep networks (L > 2)

ReLU activation functions 5.0 2.5 0.0 2.5 5.0
0

2

4

6

¸

Idea: Bound the expected loss of the network under a Gaussian
perturbation of the weights

Empirical loss: E
θ ′∼N(θ,Σ)

Rin(fθ ′) −→ estimated by sampling

Complexity term: KL(N(θ,Σ)‖N(θ0,Σ0)) −→ closed form
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Binary Activated Neural Networks
x ∈ Rd0

y ∈ {−1, 1}

Architecture:

L fully connected layers

dk denotes the number of neurons of
the k th layer

sgn(a) = 1 if a > 0 and sgn(a) = −1
otherwise

Parameters:

Wk ∈ Rdk×dk−1 denotes the weight
matrices.

θ= vec
(
{Wk }

L
k=1

)
∈RD

x1 · · · xd

sgn sgn sgn

sgn sgn sgn

sgn

Prediction

fθ(x) = sgn
(
wLsgn

(
WL−1sgn

(
. . . sgn

(
W1x

))))
,
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One Layer (linear predictor)

Germain et al. (2009a)

fw(x)
def
= sgn(w · x), with w ∈ Rd0 .

x1 x2 · · · xd

sgn
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One Layer (linear predictor)

Germain et al. (2009a)

fw(x)
def
= sgn(w · x), with w ∈ Rd .

PAC-Bayes analysis:
Space of all linear classifiers Fd

def
= {fv|v ∈ Rd }

Gaussian posterior Qw
def
= N(w, Id) over Fd

Gaussian prior Pw0

def
= N(w0, Id) over Fd

Predictor Fw(x)
def
= Ev∼Qw fv(x) = erf

(
w·x√
d‖x‖

)

2 0 2
1.0

0.5

0.0

0.5

1.0 erf(x)
tanh(x)
sgn(x)

Bound minimisation — under the linear loss `(y , y ′) := 1
2(1 − yy ′)

CmRin(Fw)+KL(Qw‖Pw0) = C 1
2

∑m
i=1 erf

(
−yi

w·xi√
d‖xi‖

)
+ 1

2‖w − w0‖2 .
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Two Layers (shallow network)

x1 · · · xd

sgn sgn sgn

sgn
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Two Layers (shallow network)
Posterior Qθ = N(θ, ID), over the family of all networks
FD = {fθ̃ | θ̃ ∈ RD}, where

fθ(x) = sgn
(
w2 · sgn(W1x)

)
.

Fθ(x) = E
θ̃∼Qθ

fθ̃(x)

=

∫
Rd1×d0

Q1(V1)

∫
Rd1

Q2(v2)sgn(v2 · sgn(V1x))dv2dV1

=

∫
Rd1×d0

Q1(V1) erf
(

w2·sgn(V1x)√
2‖sgn(V1x)‖

)
dV1

=
∑

s∈{−1,1}d1

erf
(

w2·s√
2d1

) ∫
Rd1×d0
1[s = sgn(V1x)]Q1(V1) dV1

=
∑

s∈{−1,1}d1

erf

(
w2 · s√

2d1

)
︸ ︷︷ ︸

Fw2(s)

d1∏
i=1

[
1
2
+

si

2
erf

(
wi

1 · x√
2 ‖x‖

)]
︸ ︷︷ ︸

Pr(s|x,W1)

.
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Stochastic Approximation
Fθ(x) =

∑
s∈{−1,1}d1

Fw2(s)Pr(s|x,W1)

Monte Carlo sampling

We generate T random binary vectors {st }Tt=1 according to Pr(s|x,W1)

Prediction.

Fθ(x) ≈
1
T

T∑
t=1

Fw2(s
t) .

Derivatives.

∂

∂wk
1

Fθ(x) ≈
x

2
3
2 ‖x‖

erf ′
(

wk
1 · x√
2 ‖x‖

)
1
T

T∑
t=1

st
k

Pr(st
k |x,w

k
1)

Fw2(s
t) .
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More Layers (deep)

x1 x2

ŷ

x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2

ŷ

F (j)
1 (x) = erf

(
wj

1·x√
2‖x‖

)
, F (j)

k+1(x) =
∑

s∈{−1,1}dk

erf
(

wj
k+1·s√

2dk

) dk∏
i=1

(
1
2
+

1
2

si × F (i)
k (x)

)
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Generalisation bound

Let Gθ denote the predictor with posterior mean as parameters.
With probability at least 1 − δ, for any θ ∈ RD

Rout(Gθ) 6

inf
C>0

{
1

1 − e−C

(
1 − exp

(
−CRin(Gθ) −

KL(θ, θ0) + log 2
√

m
δ

m

)) }
.
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Numerical results

Model name Cost function Train split Valid split Model selection Prior

MLP–tanh linear loss, L2 regularized 80% 20% valid linear loss -
PBGNet` linear loss, L2 regularized 80% 20% valid linear loss random init
PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre
– pretrain linear loss (20 epochs) 50% - - random init
– final PAC-Bayes bound 50% - PAC-Bayes bound pretrain

Dataset
MLP–tanh PBGNet` PBGNet PBGNetpre

ES ET ES ET ES ET Bound ES ET Bound

ads 0.021 0.037 0.018 0.032 0.024 0.038 0.283 0.034 0.033 0.058
adult 0.128 0.149 0.136 0.148 0.158 0.154 0.227 0.153 0.151 0.165
mnist17 0.003 0.004 0.008 0.005 0.007 0.009 0.067 0.003 0.005 0.009
mnist49 0.002 0.013 0.003 0.018 0.034 0.039 0.153 0.018 0.021 0.030
mnist56 0.002 0.009 0.002 0.009 0.022 0.026 0.103 0.008 0.008 0.017
mnistLH 0.004 0.017 0.005 0.019 0.071 0.073 0.186 0.026 0.026 0.033
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Contrastive unsupervised representation learning
(aka CURL)

SOTA technique to learn representations (as a set of features) from
unlabelled data (e.g., word2vec, image classification). Contrastive loss
differentiates inputs by similarity.
Arora et al. (2019): first theoretical results on CURL, using Rademacher
complexity. In a nutshell, for any predictor f and f̂ an ERM, w.p. > 1 − δ,

Losssup(̂f ) 6 C1Lossuns(f ) + C2

(
Rad
m

+

√
log(1/δ)

m

)
.

We proposed a PAC-Bayes version which improves on their results by
removing the iid assumption and by deriving a SOTA learning algorithm.
For any prior P, any posterior Q, any λ > 0, w.p. > 1 − δ

Losssup(Q) 6 C

 1 − exp
(
−λL̂ossuns(Q) −

KL(Q,P)+log(1/δ)
m

)
1 − exp(−λ)

 .
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Thanks!

What this talk could have been about...

� Tighter PAC-Bayes bounds (Mhammedi et al., 2019)

� PAC-Bayes and robust learning (Guedj and Pujol, 2019; Haddouche et al., 2020)

� PAC-Bayesian online clustering (Li et al., 2018)

Online k -means clustering (Cohen-Addad et al., 2019)

Sequential learning of principal curves (Guedj and Li, 2018)

Stability and generalisation (Celisse and Guedj, 2016)

Decentralised learning with aggregation (Klein et al., 2019)

Image denoising (Guedj and Rengot, 2020)

Matrix factorisation (Alquier and Guedj, 2017; Chrétien and Guedj, 2020)

Preventing model overfitting (Zhang et al., 2019)

/ � a few others... (very) soon on arXiv

� = PAC-Bayes
� = ”Wait, I can talk about other stuff too!”

This talk:
https://bguedj.github.io/talks/2020-06-16-seminar-faicdt
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